Strength of materials 1.0.2

License: Free ‎File size: 24.12 MB
‎Users Rating: 0.0/5 - ‎0 ‎votes

ABOUT Strength of materials

Strength of materials notes for mechanical engineering students. Strength of materials app consist fundamental concepts to learn and analyse forces in bodies. Strength of materials is helpful for all engineering & technical colleges and universities syllabus to learn explore skills. Strength of materials is almost cover important topics chapter wise Chapter :1 Mechanical properties of materials: Ductility, malleability, hardness, toughness, fatigue, creep; behavior of materials under tension, compression, bending, shear; ductile and brittle materials, failure of MS and CI in tension and torsion Stress and strain: stresses in members of a structure, axial loading, normal stress, shear stress, bearing stress, analysis of simple structures, stepped rods, members in series and parallel: stress strain diagram, Hooke’s law, modulus of elasticity, elastic and plastic behavior of materials, deformation under axial loading, statically indeterminate problems, stress due to temperature, Poisson’s ratio, Bulk modulus, shear strain, relation among elastic constants, residual stress, fiber reinforced composite materials, strain energy under axial loads and stresses due to impact of falling weights. Chapter :2 Transformation of stress and strain, principal stresses, normal and shear stress, Mohr’s circle and its application to two and three dimensional analysis, ductile and brittle failures, transmission shaft under combined bending and torsion; stresses in thin walled pressure vessel Chapter :3 Bending: pure bending, symmetric member, deformation and stress, bending of composite sections, eccentric axial loading, shear force and BM diagram, relationship among load, shear and BM, shear stresses in beams, strain energy in bending, deflection of beams, equation of elastic curve, Macaulay’s method and Area moment method for deflection of beams. Chapter :4 Torsion in shafts: stresses in a shaft, deformation in circular shaft, angle of twist, stepped-hollow, thin walled-hollow transmission shafts Leaf springs; helical springs, open and closed coil, stress in spring wire, deflection of helical spring, springs in series and parallel. Chapter :5 Theories of failures: maximum normal stress & shear stress theory; maximum normal and shear strain energy theory; maximum distortion energy theory; application of theories to different materials and